Why recognition is rational: Optimality results on single-variable decision rules
نویسندگان
چکیده
The Recognition Heuristic (Gigerenzer & Goldstein, 1996; Goldstein & Gigerenzer, 2002) makes the counter-intuitive prediction that a decision maker utilizing less information may do as well as, or outperform, an idealized decision maker utilizing more information. We lay a theoretical foundation for the use of single-variable heuristics such as the Recognition Heuristic as an optimal decision strategy within a linear modeling framework. We identify conditions under which over-weighting a single predictor is a mini-max strategy among a class of a priori chosen weights based on decision heuristics with respect to a measure of statistical lack of fit we call “risk”. These strategies, in turn, outperform standard multiple regression as long as the amount of data available is limited. We also show that, under related conditions, weighting only one variable and ignoring all others produces the same risk as ignoring the single variable and weighting all others. This approach has the advantage of generalizing beyond the original environment of the Recognition Heuristic to situations with more than two choice options, binary or continuous representations of recognition, and to other single variable heuristics. We analyze the structure of data used in some prior recognition tasks and find that it matches the sufficient conditions for optimality in our results. Rather than being a poor or adequate substitute for a compensatory model, the Recognition Heuristic closely approximates an optimal strategy when a decision maker has finite data about
منابع مشابه
Free Energy and the Generalized Optimality Equations for Sequential Decision Making
The free energy functional has recently been proposed as a variational principle for bounded rational decision-making, since it instantiates a natural trade-off between utility gains and information processing costs that can be axiomatically derived. Here we apply the free energy principle to general decision trees that include both adversarial and stochastic environments. We derive generalized...
متن کاملMulti-objective Optimization of Hybrid Electric Vehicle Equipped with Power-split Continuously Variable Transmission
This paper aims to find the efficient state of hybrid electric vehicle (HEV) by simultaneous optimization of the control strategy and the power train. The power transmission employed in this vehicle is a power-split continuously variable transmission (CVT) which uses several fixed ratio mechanisms. After describing this transmission, the rules of electric assist control strategy are introduced....
متن کاملAn Optimum Decision Rule for Pattern Recognition
The concept of rejection is extended to that of class-selective rejection. That is, when an input pattern cannot be reliably assigned to one of the N classes in a N -class problem, it is assigned to a subset of classes that are most likely to issue the pattern, instead of simply rejecting the pattern. First, a new optimality criterion is appropriately de ned to accommodate the newly introduced ...
متن کاملThe Effect of Reality -Based Pre-marital Instruction on Type Decision Making and Marriage Self-Efficacy in Single Boys
Background: A successful marriage is a dynamic growing relationship in which both partners continue to grow to achieve personal satisfaction. The aim of the present study was to investigate the effect of reality-based premarital education on the type of decision making and marriage self-efficacy among single boys in Bushehr. Methods: The design of the present study was a quasi-experimental stud...
متن کاملAn Integrated DEA and Data Mining Approach for Performance Assessment
This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010